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Abstract

This paper discusses the technique presented by Bender et. al. [1] for simulating incompress-
ible fluids with an efficient and stable Divergence-Free Smoothed Particle Hydrodynamics
method. The method uses two solvers to obtain a divergence-free fluid, a divergence solver
and a density solver to correct the density after the divergence has been corrected. This
results in a stable and fast simulation of a divergence-free fluid even though the simulation
is performed on the CPU without any parallelization.

Index Terms: Incompressible fluids, Divergence-free, SPH, divergence correction, density
correction.

1 Introduction

Smoothed particle hydrodynamics, SPH, is a
method that was first implemented in 1977
for astrophysical simulations by Gingold et
al. [2]. Since then SPH has become a popular
method for complex fluid simulations. SPH
is a mesh-free Lagrangian method where the
fluid is split into discrete sets defined as par-
ticles, which move in space and change phys-
ical properties as time progresses.

In this paper we are going to introduce the
results from reproducing the divergence-free
smoothed particle hydrodynamics method
presented by Bender et al. [1]. It is a method
which corrects the divergence error, aiming
for a divergence-free velocity field which is
needed for an incompressible fluid. For the
solution to be divergence-free the density has
to be constant over time.
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2 Background and Related
Work

In the field of computer graphics a variety of
methods for simulating incompressible fluids
exist. This section will give a brief overview
of related approaches.

Bender et al. [1] proposed a method for a
stable implicit SPH solution. The method
uses a combination of two pressure solvers
which enforce a low volume compression be-
low 0.01% and a divergence-free velocity
field. It can be seen as enforcing incompress-
ibility on both position and velocity level.
The low compression is important for real-
istic physical behavior and a divergence-free
state increases the stability of the simula-
tion which reduces the number of solver it-
erations.

Another incompressible SPH method was
proposed by Hu et al. [3] for multiphase flows
where the time integration step to obtain ve-
locities is divided into two half steps. This
is done to enforce both zero density varia-
tion condition and the velocity divergence-
free condition at each full time step. Dur-
ing the first half step density fluctuations are
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eliminated by altering the intermediate par-
ticle position. During the second half step
errors in velocity divergence are resolved by
altering the intermediate particle velocity.

Ihmsen et al. [4] proposed an implicit in-
compressible SPH method with a pressure
Poisson equation made by the combination
of a symmetric SPH pressure force and a
SPH discretization of the continuity equa-
tion. The pressure Poisson equation is used
to compute the pressure so that the pressure
forces correct the intermediate velocities to
a divergence-free state.

A predictive corrective incompressible
SPH method was proposed by Solenthaler et
al. [5] based on the Lagrangian SPH model.
Incompressibility was enforced using a pre-
diction correction scheme to determine the
particle pressures. To achieve this the infor-
mation about the density fluctuation was ac-
tively propagated through the fluid and the
pressure values were updated until the tar-
geted density was satisfied.

A ghost fluid approach for free surface
and solid boundary conditions for a SPH
fluid simulation was proposed by Schechter
et al. [6]. The ghost particles are placed
on free surfaces and at solid boundary con-
ditions. The approach solves problems like
spurious numerical surface tension artifacts
and errors in the mass conservation con-
straints.

3 Method

The produced simulation after following the
method proposed by Bender et al. [1] is
drafted in Listing 1. Upon starting the appli-
cation the particle neighbourhood Ni will be
determined with a cell list solution explained
in Section 3.3. For each particle the alpha αi
and density ρi parameters will be computed,
both of which are commonly reused variables
and thus worth storing to reduce computa-
tion cost. This is done before entering the

simulation loop as initial values are required.
During the loop all these parameters will be
updated as the simulation progresses.

Once in the simulation at line 7 the first
time step will be determined through the
CFL condition explained in Section 3.2. The
new velocities for each particle is then pre-
dicted through the included external forces
which are propagated with ordinary Euler
integration.

1 f unc t i on per formFlu idSimulat ion
2 f o r a l l p a r t i c l e s i do // I n i t

neighbourhoods
3 f i n d neighbourhoods Ni(0)
4 f o r a l l p a r t i c l e s i do // I n i t ρi and

αi
5 compute d e n s i t i e s ρi(0)
6 compute f a c t o r s αi(0)
7 whi le ( t < tmax ) do // Star t

s imu la t i on loop
8 adapt time step ∆t
9 f o r a l l p a r t i c l e s i do // Pred i c t

v e l o c i t i e s v∗i
10 vi = vi + ∆tFg/mi

11 co r r e c tDens i tyEr ro r (α,vi ) //
F u l f i l l ρ∗ − ρ0 = 0

12 f o r a l l p a r t i c l e s i do //Update
p o s i t i o n s

13 xi(t+ ∆t) = xi(t) + ∆tv∗i
14 f o r a l l p a r t i c l e s i do //Update

neighbourhoods
15 f i n d neighbourhoods Ni(t+ ∆t)
16 f o r a l l p a r t i c l e s i do //Update ρi

and αi
17 compute d e n s i t i e s ρi(0)
18 compute f a c t o r s αi(0)
19 co r r e c tD ive rgenceEr ro r (α,v∗ ) //

F u l f i l l Dρ
Dt

= 0

Listing 1: Simulation algorithm

The density solver uses the precomputed
parameter αi together with this prediction
to compute the pressure forces in each neigh-
bourhood such that it can correct the density
error ρ∗i − ρi = 0. This is further explained
in Section 3.6.

After the particle position xi has been up-
dated the neighbourhoods and the αi and ρi
factors are recalculated to reflect the new po-
sitions. Lastly, in line 19 of Listing 1 the di-
vergence solver, much like the density solver,
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calculates the pressure forces to eliminate its
error. In this case the divergence error Dρi

Dt
is corrected to be equal to 0.

3.1 Navier-Stokes

Navier-Stokes equations describe incom-
pressible fluids and are therefore suitable for
SPH simulations. The equations expressed
in Lagrangian coordinates can be found in
Equation 1 and 2.

Dρ

Dt
= 0⇔ ∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ v∇2v +

f

ρ
(2)

In the equations Dρ
Dt and Dv

Dt denotes the
derivate of the density ρ and the velocity v
respectively. The pressure, kinematic viscos-
ity and body forces are denoted by p, v and f
respectively. The second part of Equation 1,
∇·v = 0, induce that the velocity field is free
from divergence. From the continuity equa-
tion Dρ

Dt = −ρ∇ · v and the divergence-free
condition it follows that the partial derivate
of the density with respect to the time is
zero, which implies the equivalence of the
equations in Equation 1. From this it fol-
lows that the density, in theory, must stay
constant over time which is the implication
of an incompressible fluid. In practice the
divergence-free condition is not sufficient to
guarantee incompressibility in simulations.
The numerical time integrations will contain
numerical errors which will cause density de-
viations due to the volume compressions. To
avoid this a second condition ρ − ρ0 = 0
called constant density condition must be
fulfilled [1]. Section 3.6 and 3.7 give a deeper
description of the solvers used in the project.

3.2 Adapted time step

In order to assure a stable simulation it is
necessary to adapt the time step depending

on the motion. Depending on how quick the
particles move, smaller time steps are taken
such that the numerical error of the explicit
time integration is negligible. A condition
was proposed by Courant−Friedrichs−Lewy,
often refered to as the CFL-condition, which
is shown in Equation 3. The time step ∆t is
equal to a fraction of the particle’s diameter
d divided by the maximum velocity Vmax in
the scene.

∆t ≤ 0.4 · d
Vmax

(3)

Each rendered frame however have a con-
stant time step in order to ensure no speed
change in the playback of the rendered video.
This is decided from the user side as a de-
sired fps parameter. This means that the
simulation loop can iterate multiple times
within each frame adaptively depending on
the maximum velocity of a particle.

3.3 Neighbourhood search

Since SPH only considers a finite amount
of neighbouring particles it is important to
keep track of every particles’ neighbours.
Searching through all particles for neigh-
bours within the cutoff distance h for ev-
ery particle is inefficient and takes O(N2)
time. The cutoff distance h is the kernels’
smoothing radius. To make this faster a cell
list was implemented. A cell list is a data
structure that is divided into cells that have
a length larger or equals to the cutoff dis-
tance h. Each cell spans on a surface in
space. A particle belongs to a cell if it is in-
side the space the cell occupy. When finding
the neighbour of particle i, only the neigh-
bouring cells have to be searched for parti-
cles within the cutoff distance, see Figure 1.

The cell list is implemented by using a four
dimensional vector where the first three di-
mensions are for the x, y and z coordinates
and the fourth dimension is for storing the
index of the particles that belong to the cell.
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Figure 1: Finding the neighbours for the
filled in particle i by looking through all
neighbouring cells, including its own cell, for
particles within the cutoff distance h

The amount of cells are decided by divid-
ing the scene into cells of length h. The par-
ticles are then assigned to a cell by finding
the cell’s coordinates that it belongs to ac-
cording to Equation 4, where x is the po-
sition of the particle and smin is the lowest
position of the scene space. If the particle
moves out of its cell it is reassigned to the
new cell it is inside.

dx− smine
h

(4)

3.4 Kernel

A kernel function is used to simulate how
particle to particle interactions decrease
with the distance between the current parti-
cle and its neighbours. In SPH simulations
this is an approximation of the Gaussian ker-
nel function. Different kernels have been
tested in previous works i.e. the poly6 ker-
nel, the spiky kernel and the cubic spline ker-
nel. According to Bender et. al. [1] the cubic
spline kernel presented by Monaghan [7] was
used. The kernel is described by Equation 5,
where q(x) = ‖x‖

h , x is the distance between
the current particle and a neighbour particle
and h is the support radius for the kernel.

Particles further away than the support ra-
dius will not affect the current particle.

Wh(q(x)) = 1
πh3


1− 3

2q
2 + 3

4q
3 0 6 q < 1

1
4(2− q)3 1 6 q < 2

0 q > 2

(5)

The algorithm does also require the kernel
gradient. To reduce the computational effort
and memory requirements Bender et. al. [1]
introduce a scalar function g(q) = ∂Wh

∂q ·
1

h‖x‖ .
The gradient kernel is then calculated by
∂Wh(q(x)) = x · g(x). The gradient kernel is
described by Equation 6.

∂Wh(q(x)) = x 1
h‖x‖

1
πh3


−3q + 9

4q
2 0 6 q < 1

−3
4(2− q)2 1 6 q < 2

0 q > 2

(6)

It is important to use the same kernel
function for both Wh and ∇Wh to get the
prediction and the correction step to be com-
patible to each other.

3.5 Density and alpha factors

The density in a region of the fluid with a
particle xi in the center is calculated through
Equation 7 where ρi is the density with the
current particle xi in center, ρj is the den-
sity with a neighbouring particle xj in cen-
ter, mj is the mass for a neighbour particle
and Wij is the kernel function described in
Section 3.4. This implies that neighbouring
particles closer to the current particle xi will
have a greater affect on the density.

ρi =
∑
j

mj

ρj
ρjWij =

∑
j

mjWij (7)

Both the density solver and the divergence
solver uses a stiffness parameter κvi presented
by Bender et. al. [1], Equation 8.
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κvi =
1

∆t

Dρi
Dt
· αi (8)

In the equation ∆t denotes a small time
step and αi is a precomputed factor to de-
crease the computations while performing
the solvers. Bender et. al. [1] defines αi as

αi =
ρi∣∣∣∑jmj∇Wij

∣∣∣2 +
∑

j |mj∇Wij |2
(9)

where Wij corresponds to the kernel gra-
dient.

3.6 Density solver

This solver aims to minimize the density er-
ror caused by the numerical integration in
the divergence solver. The density error is
determined by comparing the actual density
to the rest density, ρ− ρ0. There are several
density solvers presented in previous works,
but the solver used in this project was pre-
sented by Bender et. al. [1] which uses the
fact that αi has been calculated before the
solver which reduces the computations in the
solver. The solver will be active while the
average of the predicted densities for every
particle differs from the rest density with an
error greater than a constant maxError. For
every particle a predicted density ρ∗i is cal-
culated through an Euler integration step by
Equation 10.

ρ∗i = ρi + ∆tDρiDt

⇔

ρ∗i = ρi + ∆t
∑

jmj(v
∗
i − v∗j )∇Wij

(10)

F p
i = −mi

ρi
∇pi (11)

The pressure force of a particle is deter-
mined by Equation 11, where the pressure

gradient can be solved using the SPH formu-
lation proposed by Ihmsen et al. [8], Equa-
tion 12.

∇pi = κvi∇ρi = κvi
∑
j

mj∇Wij (12)

F p
j←i = −mi

ρi
κvimj∇Wij (13)

Further on, the pressure forces F p
j←i that

act from particle i on all its neighbours j
is calculated through Equation 13, where
the stiffness parameter κi is determined by
Equation 14.

κi =
1

∆t2
(ρ∗i − ρ0)αi (14)

To conserve momentum it is required that
all inner pressure forces sum up to zero such
that F p

i +F p
j←i = 0. As proposed by Bender

et. al [1] the solver computes the total force
F p
i,total through Equation 15.

F p
i,total = F p

i +
∑

j F
p
i←j

⇔

F p
i,total = −mi

∑
jmj(

κvi
ρi

+
κvj
ρi

)∇Wij

(15)

Newton’s second law F = ma = mdv
dt im-

plies that dv
dt is according to Equation 16.

The velocity of particle i is thus changed ac-
cording to Equation 17.

dv

dt
=
∑
j

mj(
κvi
ρi

+
κvj
ρi

)∇Wij (16)

v∗i+1(t) = v∗i (t)−∆t
∑

jmj(
κvi
ρi

+
κvj
ρi

)∇Wij (17)
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3.7 Divergence solver

The divergence-free solver ensures the fluid
to be free of density change over time by
enforcing Dρ

Dt = 0, which is equivalent to
the Navier-Stokes divergence free condition
given in Equation 1.

Equation 18 defines how the density change
is computed. As in the density solver, the
total pressure forces acting on a particle i
are computed. The stiffness parameter is
calculated through Equation 19.

Dρi
Dt

=
∑
j

mj(vi − vj)∇Wij (18)

κvi =
1

∆t

Dρi
Dt
· αi (19)

The stiffness parameters need to be deter-
mined iteratively since neighboring particles
depend on each other. After the symmetric
pressure force has been applied to the new
velocity should the density change in Equa-
tion 18 be equal or close to zero. If the error
is too large the process will be iterated until
the desired result have been achieved.

3.8 Boundary conditions

Dirichlet boundary condition was imple-
mented in order to simulate the fluid inside
a bounding box. Dirichlet assumes that the
pressure is zero outside the fluid and there-
fore the value a quantity has to take along
the boundary has to be specified, in this case
the velocity was set to zero when a particle
reaches the boundary, Bridson [9].

An isosurface was also introduced in the
middle of the scene in order to simulate col-
lisions with arbitrary objects. This was done
as an implicit representation of geometric
shapes, described as a function f(x, y, z).
Given an isovalue C = f(x), point x can
be classified as follows:

Inside: f(x) < C
Outside: f(x) > C
On surface: f(x) = C

(20)

All possible implicit geometries can be de-
scribed by a quadratic function, which is
found in Equation 21, and in matrix form
in Equation 22.

f(x, y, z) = Ax2 + 2Bxy + 2Cxz

+ 2Dx+ Ey2 + 2Fyz (21)

+ 2Gy +Hz2 + 2Iz

+ J

pTQp =
[
x y z 1

] 
A B C D
B E F G
C F H I
D G I J



x
y
z
1

(22)

Considering that the geometry is placed
at the origin, f(x) = 0 means the particle is
on the surface and pTQp ≤ 0 can be used to
determine collisions.

Since the quadric surface is known analyt-
ically the differentiation can be applied to
the quadric directly to get the gradient of the
shape in position x. This gives an efficient
and analytical expression with a coefficient
matrix Q, which is used to help determine
the new velocity direction of a particle after
colliding with the surface.

∇f(x, y, z) = 2

 A B C D
B E F G
C F H I



x
y
z
1

 (23)

= 2Qsubp

4 Implementation

The divergence-free SPH simulation was de-
veloped using OpenGL and C++ together

6



with the OpenGL mathematics library GLM
for vector calculations. FreeImage was used
to save frames of the simulation and FFmpeg
to assembled the frames into a video. Pico-
JSON was used to load variables from a file
making it easier to change variables quickly
and efficiently and a makefile was used to
compile the project.

The simulation was developed on macOS
and Linux. The Linux computer is running
on Debian and has a 50 GHz Intel Core
i5-2450M processor and a NVIDIA GeForce
610M graphics card. One of the Mac OS
computer is running on macOS Sierra and
has a 1.8 GHz Intel Core i5 processor with
an Intel HD Graphics 400 1536 MB graphics
card.

5 Results

When the application starts, the water is
represented as set of spheres where every
sphere has the properties of a particle. The
initial state is illustrated in Figure 2. The
water is affected by a gravity which induce
a falling motion, illustrated in Figure 3.

Figure 2: Initial state of the water when the
application starts.

Since the water aims to be in the state
of rest, the motion will decrease over time
which is illustrated in Figure 4.

Figure 3: The water falls due to the gravity.

Figure 4: The water is calm with some mo-
tion.

To be able to simulate how outer forces
affect the water, we implemented a feature
where the user is able to change the direc-
tion of the force. The result when applying a
force from right to left on the water and then
letting only the gravity affect it is shown in
Figure 5.

Implicit geometries can also be added to
the scene in order to see how the water
collides and interacts with it. Figure 6 il-
lustrates a scene with a solid cylinder that
forces the water to divert its momentum
around the cylinder’s surface.

When running the program in real time
with 5000 particles it runs with a frame rate
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Figure 5: The water after an applied right to
left motion followed by gravity as the only
outer force.

Figure 6: The water colliding with a cylin-
der.

of 6-8 fps on the MAC computer. When in-
stead simulating with 10, 000 particles the
frame rate is about 2 fps on the MAC com-
puter.

6 Conclusions and Future
Work

We were able to implement the SPH method
presented by Bender et al. [1] which induce
that the fluid is incompressible. Though,
there are several possible improvements that
would improve the implementation and in-

crease the frame rate.
To increase the accuracy of the interac-

tion with the boundary and free surfaces a
method like ghost-SPH that was presented
by Schechter et al. [6] could be implemented.
A method that Bender et al. [1] used was
the versatile rigid fluid coupling method for
incompressible SPH presented by Akinci et
al. [10]. It is based on static boundary par-
ticles which could also be a valid implemen-
tation to get better boundary interactions.

To get the simulation to be able to han-
dle more particles the solution could be par-
allelized to speed up the calculations. This
could be done using OpenMP and increasing
the threading.

To get the simulation more interesting vis-
cosity can be introduced into the fluid simu-
lation. It would make simulations of thicker
fluids possible.

According to Bender et al. [1] the ker-
nel values could easily be precomputed and
used together with a look up-table in order
to speed up the calculations. This will re-
sult in a 30% faster application. This could
be done once when the iteration loop begins
and the positions for the particles are deter-
mined. Another approach would be to com-
pute a discrete representation of the kernel
function before the iteration loop and inter-
polate between to kernel values in the simu-
lation loop in order to find a kernel value for
a specific particle.
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